

屋内測位と行動計測に基づく従業員スキルの把握・評価に向けて

〇蔵田武志 福原知宏 天目隆平 牧田孝嗣 興梠正克 大隈隆史

産業技術総合研究所

National Institute of Advanced Industrial Science and Technology

ASPR

行動計測・提示技術の適用によって マネージメントや改善活動, サービスオペレーション再設計(サービス・ プロセス・リエンジニアリング)の支援

ASPR: Augmented Service Process Reengineering (拡張サービス・プロセス・リエンジニアリング)

POS 結果 内の各装置の稼働状況、オフィス機器の消費電力 知覚

だッグデータの構造化・意味付けと

屋内外時空間情報(行動情報)

顧客の購買、勤怠情報、工場

知覚 スキル 影響 意思決定プロセスモデル (限定合理性、満足化原理) 屋内行動計測は 未開拓領域! 影響 スキル

レイアウト、磁場、温度、湿度、照度、看板、雰囲気

屋内環境情報整備は 未開拓領域! 既存のビッグデータ (従来から可観測なデータ)

関係付け(リンク) 構造化(意味付け)

屋内外時空間情報

<u>ビッグデータの構造化・</u> 意味付けに直接的に寄与

人間の情報「行動」

- 位置•姿勢情報
- 意味情報(行動種別、作業内容)

地理空間情報「場」

- 屋内外幾何情報
- 地質情報
- 環境情報(磁場、温度、 湿度、照度等)
- 安全、防災情報
- 差分(動的)情報

realistic or retailed industrial colories and recimology

ASPR技術

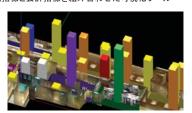
遺遺刺激`

Jational Institute of Advanced Industrial Science and Technology

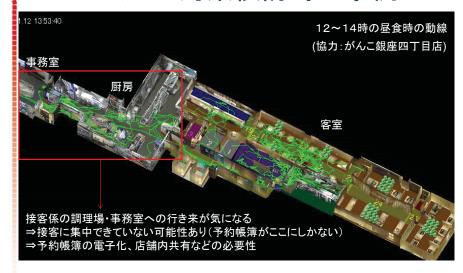
* 本資料の著作権は著者に帰属します

National Institute of Advanced Industrial Science and Technology

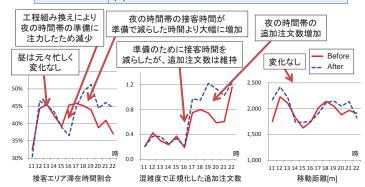
CSQCC: 結果・行動・環境刺激の総合分析


(CSQCC: Computer Supported Quality Control Circle)

行動指標と会計指標を組み合わせた可視化ツール



特定従業員の店内エリアごとの滞在時間割合


CSQCC:対策検討時の事例

National Institute of Advanced Industrial Science and Technology

がんこ: CSQCC (Computer-Supported QC Circle)

現状把握	(マネージャ側の想定より)接客時間が短い
対策	(1)工程組み換え, (2)役割分担徹底, (3)心がけ
改善効果	夜の時間帯の接客エリア滞在時間 → 増加
波及効果	夜の時間帯の追加注文 → 増加
トレードオフ (副作用)	(1)従業員負荷(移動距離) → 変化なし (2)15時台:追加注文数 → 減少なし

National Institute of Advanced Industrial Science and Technology

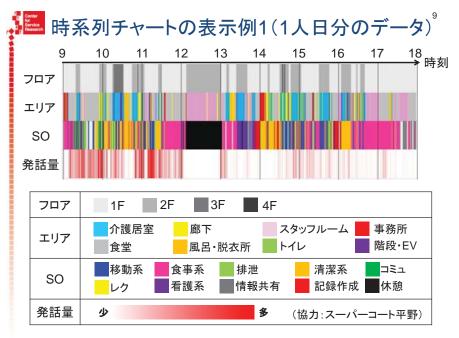
スーパーコートでの実証実験

- スーパーコート平野(施設型)、南花屋敷(集合住宅型)の2施設での従業員(ヘルパ、看護婦、ケアマネ等)の行動を計測
- 計測日程
 - 2010年1月9~16日:平野
 - 2010年1月18~24日:南花屋敷

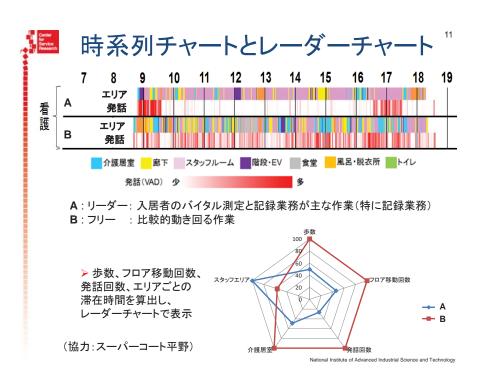
スーパーコート平野 4階建て 56室 延床面積:1864.63㎡

ワイヤレスエコセンサ

アクティブRFIDタグ



ビデオカメラ(計5台)



National Institute of Advanced Industrial Science and Technolog

装着型環境センサ

National Institute of Advanced Industrial Science and Technology



➤ Aは疲み度の高いSOに多くの時間を費やしているが、まとまった休憩がとれている

(協力:スーパーコート平野)

National Institute of Advanced Industrial Science and Technology

加速度センサ

精度向上

動作認識

16

🎾 多岐に亘る測位センサの特性比較

				C	ost	Measurement				
	Cat	egory	Stationary node	DB	Mobile node	Computation	Outdoor positioning	Indoor positioning	Direction	
10		(A) GNSS	N	L	L-M	L-M	м-н	N/A	N/A	
apou e		IMES	Н	М	м-н	L	М	м-н	N/A	
mobile		Passive RFID	м-н	М	L-M	L	м-н	м-н	L	
ary and		Active RFID	Н	М	м-н	L-M	М	м-н	L	
(I) Combo of stationary and mobile nodes		Bluetooth/Wi-Fi	м-н	М	L-M	L-M	М	м-н	L	
bo of s	(B) LPS	UWB	Н	М	Н	L-M	н	н	L	
0 Com		Ultrasonic	Н	М	L-M	L	м-н	м-н	L	
3		Visible Light	м-н	М	м-н	L	м-н	н	L	
(II) Stationary nodes		Surveillance Camera	м-н	М	N	Н	н	н	н	
S	(C) Mobile	Artificial Marker	L	М	М	М	н	н	н	
(III) Mobile nodes	Camera	Natural Feature	N	Н	М	Н	н	н	Н	
() Mobi	(D) Self- contained	INS	N	L	Н	L	м-н	м-н	н	
ij	sensors	PDR	N	L-M	М	L-M	м-н	м-н	м-н	
	(E) Map matching	N	Н	N	м-н	М	м-н	L	
		(F) SDF	М	м-н	М	Н	м-н	м-н	м-н	

行動計測:PDRplus

- PDR (Pedestrian Dead-Reckoning)
 - 自蔵センサモジュールからの計測データを基に歩行動 作検出、移動速度ベクトル・相対高度変化量推定を行う
- 腰部にセンサモジュールを装着
 - 装着・メンテナンスが容易
 - 重心移動のある動作の認識が容易
 - ハンドヘルドに拡張可能(足装着型との比較)

PDRplus

- <u>歩行動作以外の動作</u>も認識 (Boostingによる学習)
- 測位精度と動作認識精度を共に向上

測位誤差4.3% → 2%に減少

2動作での予備評価:動作認識率89% → 96%に向上

PDRからPDRplusへ

スタビライズ

動作種別絞込

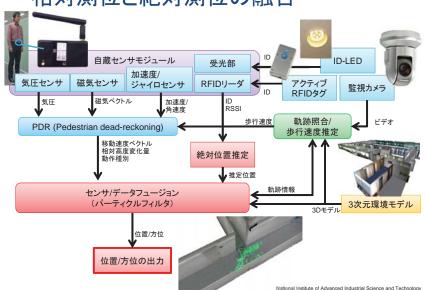
測位誤差抑制

PDRplus

PDRの世界動向

movea (75/2)

CSR (1412)


センサハブ

- センサーハブという考え方 がセンサメーカやチップメーカの間で広がり始めている (Apple, CSR & St micro, InvenSense, Kionics, Intel, Qualcomm、旭化成など)
 - 端末中で各センサが(HW, OS, API的に)分散しすぎて いる:GPSと10軸センサは 別々に扱われている
 - センサの生データの扱いは 難しい(キャリブレージョンなど)
 - センサフュージョンには継続 的な(always-on)計算 が必 要 (Kalman filtering, particle filtering, etc.)

National Institute of Advanced Industrial Science and Technolog

♪ センサデータフュージョン(SDF)による ¹⁷ 相対測位と絶対測位の融合

レストラン接客係のSOE

経営陣と打ち合わせの上、8種類のサービスオペレーションを定義

	SO	補足
[1]	注文伺い	客席で料理・ドリンク等の注文を聞いてハンディ端末に入力
[2]	配膳	できあがった料理・ドリンクを客席でサーブ
[3]	移動/物を運ぶ	主に通路で
[4]	会計	レジまたは客室で
[5]	挨拶/案内	入口やエレベータから客席までお客さんを案内、客席に挨拶
[6]	片付け/セッティング	客席の片付け、宴会やコースの場合は準備も
[7]	お客さんと会話	主に客席、通路で
[8]	スタッフと会話	主にパントリー、調理場で

19

セッティング National Institute of Advanced Industrial Science and Technology

↓ サービスオペレーション推定(SOE)¹⁸

従業員の行動データと業務データから 各従業員の現場・役割固有の作業内容を推定

機械学習の手法(AdaBoost)を利用して実現

業務データ

-会計データ •POSデータ ・ 業務スケジュール ・ナースコールの ログデータ

SOの推定材料 になり得るデータなら 何でも利用可能

National Institute of Advanced Industrial Science and Technolog

レストラン接客係のSOE結果

	SO
[1]	注文伺い
[2]	配膳
[3]	移動/ 物を運ぶ
[4]	会計
[5]	挨拶/案内
[6]	片付け/ セッティング
[7]	お客さん と会話
[8]	スタッフ と会話

		抖	隹	京	2	伛	1		再現率	
		[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[%]
	[1]	218	16	3	3	11	21	2	3	78.7
	[2]	21	312	0	0	4	24	0	0	86.4
真	[3]	6	12	44	0	19	46	0	6	33.1
	[4]	1	4	0	85	2	4	0	0	88.5
	[5]	4	0	0	4	234	31	0	7	83.6
値	[6]	8	6	0	3	8	551	0	2	95.3
ш	[7]	12	6	0	0	14	6	51	1	56.7
	[8]	12	10	0	6	30	17	0	184	71.0
適合率[%]		77.3	85.2	93.6	84.2	72.7	78.7	96.2	90.6	81.0

▶ 適合率:正しい推定結果の数/推定結果の数 ▶ 再現率:正しい推定結果の数/真値データの数

National Institute of Advanced Industrial Science and Technology

20

老人ホーム介護ヘルパーのSO

		SP based SO(%)	SO						
	[1]	更衣•整容	更衣•整容						
	[2]	移動	移動・物を運ぶ						
	[3]	 排泄	誘導・移動介助 排泄介助						
	[4]	食事	食事介助						
A ====			食事・飲み物・薬の用意,片づけ シーツ交換・清掃						
介護	[5]	清潔	入浴介助						
	[6]	コミュニケーション	入居者への声掛け						
	[O]		ナースコール対応						
	[7]	環境整備	環境整備						
	[8]	洗濯	洗濯						
	[0]	レクリエーション	口腔ケア						
	[9]	レクリエーション	レクリエーション						
看護	[10]	薬品管理	服薬介助						
11 设	[11]	バイタル測定	バイタル測定						
	[4.0]	桂却 + 左	スタッフとの会話						
	[12]	情報共有	申し送り						
	[13]	記録作成	記録業務						
	[14]	休憩	休憩						
			National Institute of Ad						

(※)「介護・看護 現場のサービス プロセス分類」を もとに、現場で慣例 的に介護ヘルパー が行っている14 種類のSOを定義

lational Institute of Advanced Industrial Science and Technology

Center for Service Research

SOEの実現によって得られる指標

- ▶ 動線への自動アノテーションが可能
 - □ワークサンプリング、連続観測法等の効率化
 - □業務記録、申し送り等のドキュメント作成支援に繋がる
 - □ 従業員にとっての大きなメリット
- ▶ 従業員ごとの身体的負荷の見積りが可能
 - □根拠に基づいたシフト管理、従業員満足度の向上に繋がる
- ▶ 各従業員の仕事のやり方、各仕事にかかる時間
 - □従業員教育、ノウハウ・スキル伝達
- > 割り込み作業発生の有無
 - □ 平常時の作業プロセスのモデル化
 - □割り込み作業の頻度やパターンの発見、割り込み作業 の制御

23

Center for Service Research

老人ホーム介護ヘルパーのSOE結果

	SO							推		京	2		値					再現		
[1]	更衣•整容			[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	率[%]		
[0]	エクチ L		[1]	233	0	5	6	4	0	0	0	0	0	0	0	0	0	94.0		
[2]	移動		[2]	1	259	16	9	3	7	0	1	6	0	1	0	2	0	84.9		
[3]	排泄		[3]	1	4	290	1	0	1	1	0	0	0	0	0	0	0	97.3		
[0]	17171	占	[4]	0	3	2	682	3	0	0	0	6	3	1	0	4	0	96.9		
[4]	食事	真	[5]	0	0	0	0	282	0	0	1	0	0	0	0	0	0	99.6		
			[6]	3	7	14	12	5	76	0	3	0	2	6	2	9	0	54.7		
[5]	清潔		[7]	0	1	2	1	3	2	123	1	0	0	0	0	0	0	92.5		
[0]	7日/赤		[8]	0	3	5	5	11	4	0	231	0	0	0	0	0	0	89.2		
[6]	コミュニ				[9]	0	1	0	10	0	0	0	0	138	0	1	0	0	0	92.0
[6]	ケーション	値	[10]	0	0	1	27	0	0	0	0	0	68	6	0	0	0	66.7		
[7]	環境整備	胆	川山	[11]	0	0	0	1	0	1	0	0	0	0	36	0	0	0	94.7	
[8]	洗濯			[12]	0	3	1	9	3	4	0	1	0	3	5	228	20	0	82.3	
	レクリ		[13]	0	8	5	17	2	0	0	5	0	0	4	4	369	0	89.1		
[9]	エーション		[14]	0	0	0	0	0	0	0	0	0	0	0	0	0	398	100		
[10]	薬品管理		i合率 [%]	97.9	89.6	85.0	87.4	89.2	80.0	99.2	95.1	92.0	89.5	60.0	97.4	91.3	100	88.1		
[11]	バイタル測定																			

▶ レストラン接客係:8種のSO、81%

▶ 老人ホーム介護ヘルパー: 14種のSO、88%

National Institute of Advanced Industrial Science and Technology

[12]

[13]

[14]

情報共有

記録作成

参考文献

24

- · "サービス工学 —51の技術と実践—", 赤松幹之 ·新井民夫 ·内藤耕 ·村上輝康 ·吉本 一穂 監修, 朝倉書店, 2012.
- M. Kourogi, and T. Kurata, "Personal Positioning Based on Walking Locomotion Analysis with Self-Contained Sensors and a Wearable Camera", In Proc. ISMAR2003, pp. 103– 112, 2003.
- M. Kourogi, T. Ishikawa, and T. Kurata, "A Method of Pedestrian Dead Reckoning Using Action Recognition", In Proc. IEEE/ION Position, Location and Navigation Symposium (PLANS), pp.85-89, 2010.
- R. Tenmoku, R. Ueoka, K. Makita, T. Shinmura, M. Takehara, S. Tamura, S. Hayamizu, and T. Kurata, "Service-Operation Estimation in a Japanese Restaurant Using Multi-Sensor and POS Data", In Proc. APMS 2011 conference, Parallel 3-4: 1, 2011.
- YouTube産総研チャンネル: http://www.youtube.com/watch?v=ohU9-CJPDJw
- T. Ishikawa, M. Kourogi, and T. Kurata, "Economic and Synergistic Pedestrian Tracking System with Service Cooperation for Indoor Environments", International Journal of Organizational and Collective Intelligence, Vol.2, No.1, pp.1-20, 2011.
- T. Ishikawa, Thangamani Kalaivani, Masakatsu Kourogi, Andrew P. Gee, Walterio Mayol–Cuevas, Jungwoo Hyun and Takeshi Kurata: "Interactive 3-D indoor modeler for virtualizing service fields", Virtual Reality, Springer, DOI: 10.1007/s10055-011-0202-1, 21 pages, 2011.
- R. Ueoka, T. Shinmura, R. Tenmoku, T. Okuma, T Kurata: "Introduction of Computer Supported Quality Control Circle in Japanese Cuisine Restaurant", In Proc. International Conference on Human Side of Service Engineering (HSSE2012) jointly with AHFE2012, 2012.
- M. Nakajima, KC. Yamada, M. Kitajima: Cognitive chrono-ethnography lite, Work 41, IOS Press, pp.617-622, DOI: 10.3233/WOR-2012-0219-617, 2012.

National Institute of Advanced Industrial Science and Technology