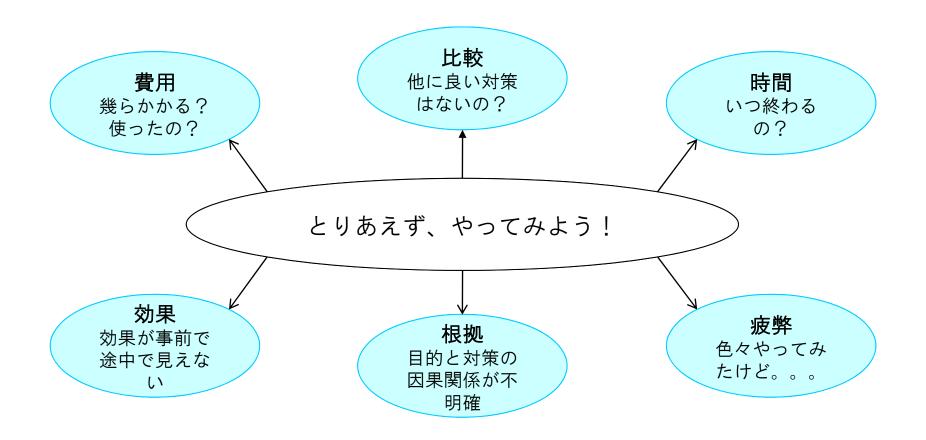


シミュレーションを活用した業務プロセス改革における 組織の問題要因の可視化手法の確立

米原 章浩 鈴木 陽一郎

株式会社 日本海洋科学



シミュレーションを活用した業務改革の利点

場当たり的に「とりあえずやってみる」業務改善活動では無駄が多く実効性も低い

シミュレーションを活用した業務改革の利点

シミュレーション型業務改革には従来型とは違った利点がある

定量的予測が可能

- ・対策を講じた際の予測が事前 に定量的に分かる
- ・他の対策案との比較が容易
- ・効果も事前に予測可能

目的と対策の因果関係明確

・「何故この対策を行うの か?」といった、改革推進の根 拠が明確

低コストで短時間

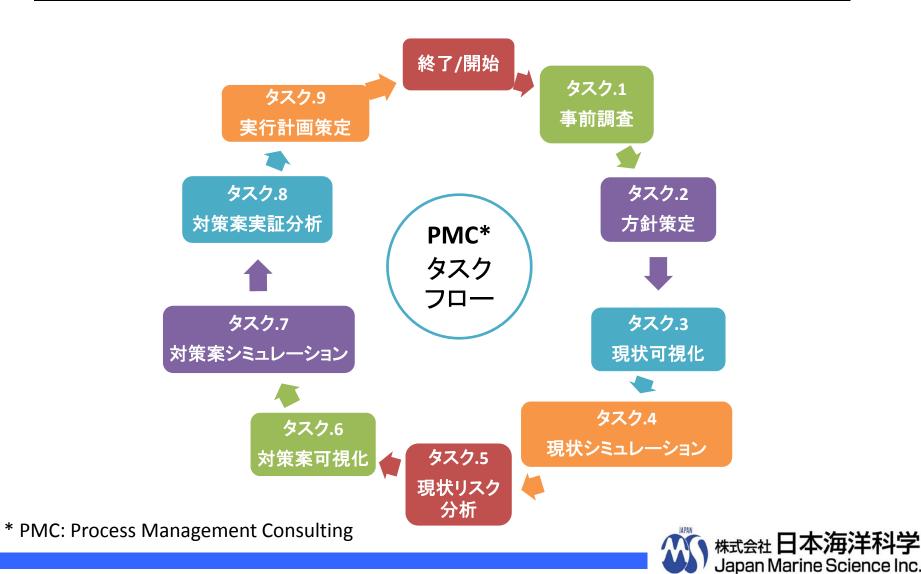
- ・「あれもこれも」ではなく、 最も効果的な対策を打つことが 出来る
- ・費用負担と時間的負担が軽い (結果、疲弊感もあまりない)

シミュレーションアプローチの問題点

- ◆ 定性的である人間・組織の行動をパラメータとして定量化
 - → 実測によるデータの収集が困難・煩雑

- ◆ 詳細な分析が必ずしも正確な結果を導くとは限らない
 - → モデル・パラメータが複雑になると理解が難しい
 - → 分析まひ症候群に陥る可能性も

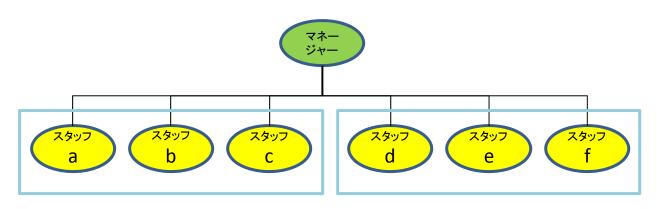
問題点へのソリューション


- ◆ できるだけ簡単なパラメータ設定の手法の確立
- ◆ アンケートやインタビューなど、コミュニケーションを重視
 - → 迅速に分析が可能
 - → コミュニケーションを通じた、情報の明快な共有が可能
 - → 現場への負担少なく、改革プロジェクトへの反発軽減

PMC Process Management Consulting タスクフロー

<u>シミュレーションを活用して、無駄なく改善・改革サイクルをまわして行く</u>

ケーススタディー概要



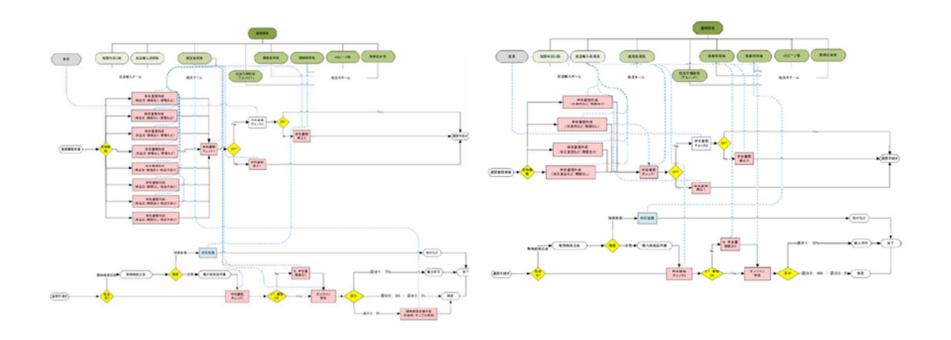
対象: 通関業者S、通関部門 スタッフ6名 マネージャー1名

現状: 繁忙期には超過勤務で対応

ベテランスタッフが頻繁に異動し混乱

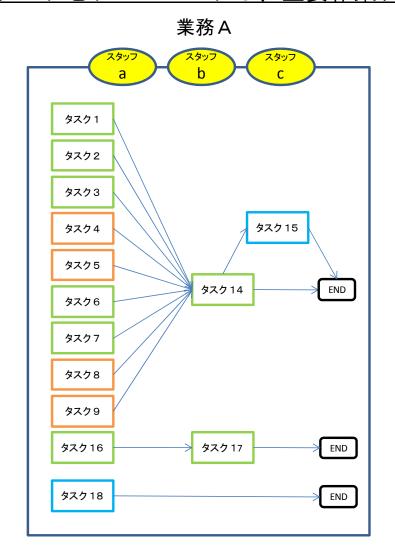
課題: 今後の需要増を見越して、現在のチーム編成で無理なく対応したい

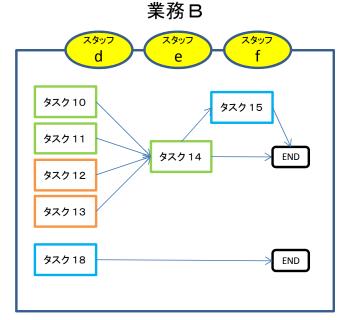
主に「業務 A」に従事


主に「業務B」に従事

現状プロセスマッピング

<u>ワークショップを行い、実際の業務に即したプロセスマッピングを作成する</u>





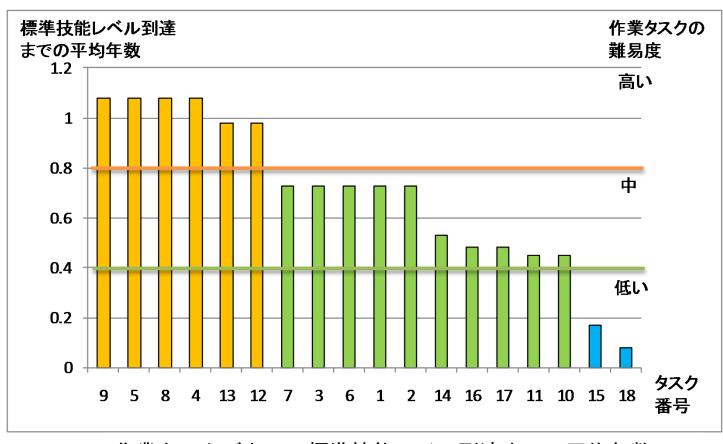
主要タスクの決定

類似タスクをグルーピングし、主要作業タスクを設定する

組織の振る舞いに関するパラメータ決定

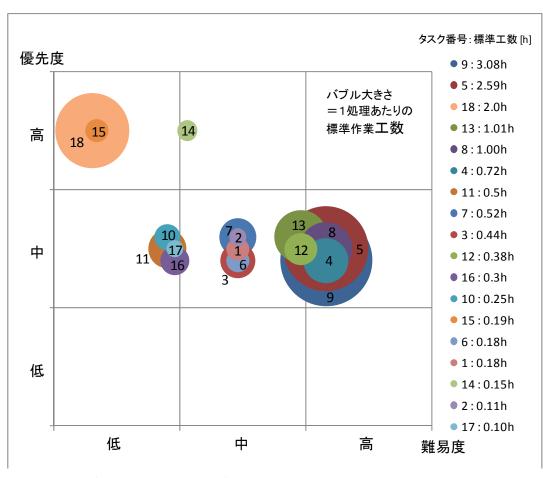
アンケートとインタビューにより、組織の特性パラメータを決定する

作業タスクの処理順番は?	1) 先入れ先出し	2)後入れ先出し	3)優先順位順
17米メヘクの処理順番は:	20 %	40 %	40 %
質問発生時の対処の判断 は?	1)自分で対処	2)上司や同僚に聞く	
1& :	30 %	70 %	
異なる種類の仕事が入って きた場合の優先順位は?	1)作業タスク	2)コミュニケー ション	3)意思決定
であっい変元順位は:	60 %	20 %	20 %


組織特性パラメータ(一部)

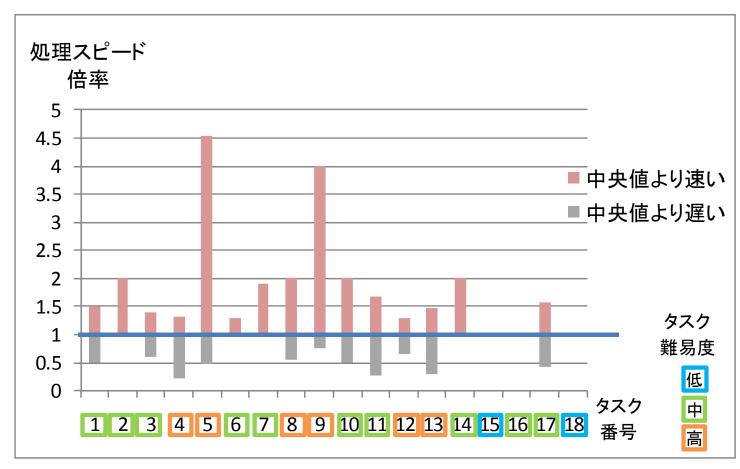
作業タスクの難易度設定

1人でその作業タスクを行えると感じるレベルを「標準技能レベル」と定義する


作業タスクごとの、標準技能レベル到達までの平均年数

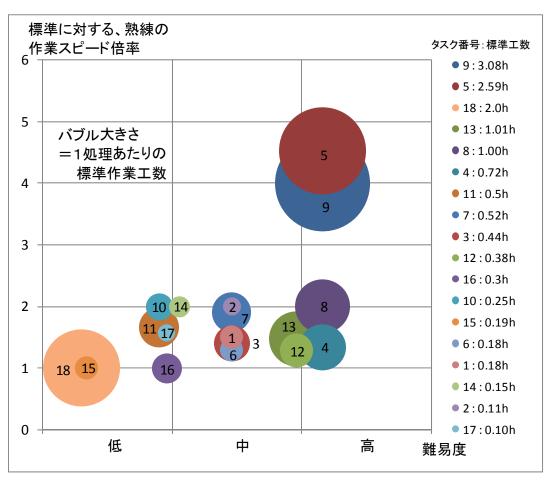
作業タスクの特性

優先度の高いタスクは難易度が低い、難易度の高いタスクは標準作業工数が大きい


「作業難易度 ー 優先度 ー 作業工数」 多次元マップ

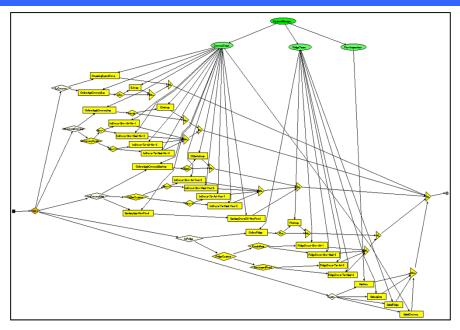
技能レベルの違いと作業速度の関係 ①

作業タスクによって、チーム内での作業スピードのばらつきに違いがある


作業タスクごとの、チーム内での作業スピードのばらつき度合い

技能レベルの違いと作業速度の関係 ②

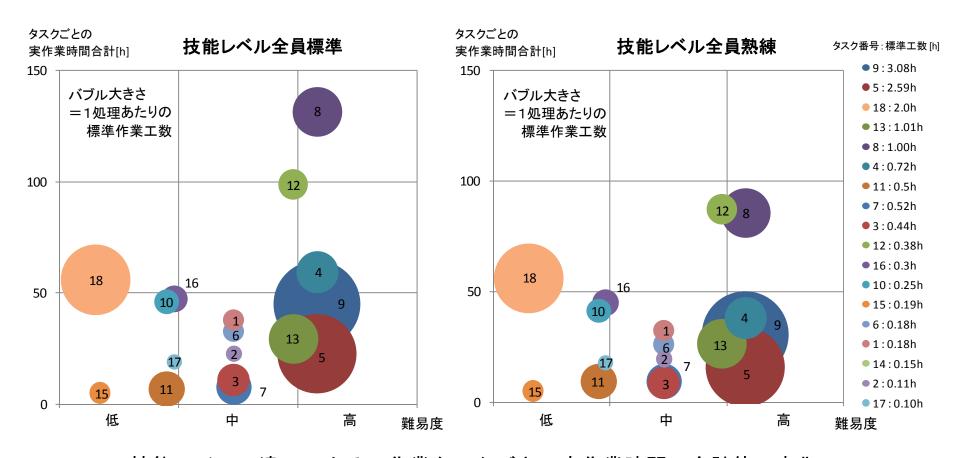
<u>熟練は標準に比べて、作業タスクによっては4倍以上スピードが速いものもある</u>



「作業難易度 ー 作業スピード ー 作業工数」 多次元マップ

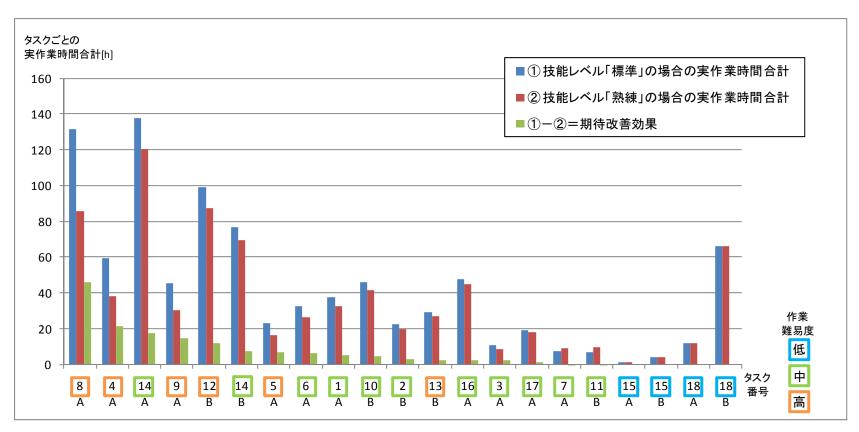
シミュレーションの実行

PMT* シミュレーションモデル


- ◆ 昨年の作業量をもとに、繁忙期のインプットを作成
- ◆ 2つのシミュレーションシナリオを用意 シナリオ1.スタッフ全員の技能レベルが標準 シナリオ2.スタッフ全員の技能レベルが熟達

シミュレーション結果 作業時間削減効果 ①

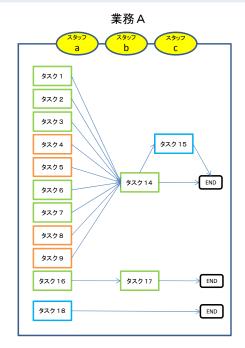
<u>熟練は標準に比べて、作業タスクによっては4倍以上スピードが速いものもある</u>

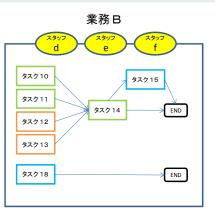

技能レベルの違いによる、作業タスクごとの実作業時間の合計値の変化

シミュレーション結果 作業時間削減効果 ②

作業時間が大きい、難易度が高いタスクのほうが、期待改善効果が大きい傾向がある

技能レベルの違いによる、作業タスクごとの実作業時間の期待改善効果




シミュレーション結果 業務別期待改善効果

業務によって、技能レベル向上による改善効果に差がある

	業務A	業務B
シナリオ1 全員標準 ①	565 時間	350 時間
シナリオ2 全員熟達 ②	443 時間	324 時間
期待改善効果 ①一②	122 時間	26 時間
期待改善効率 (①-②)/①	21.6 %	7.4 %

実行可能で効果的な改善案の策定

技能向上の可能性

- ①特別な適正が必要か?
- ②努力やトレーニングで実現可能か?
- ③実現可能であれば、どんな方法が効率的か?
- (④特別な資格が必要か?)

技能向上の方法

- ①熟練者からのOJTにより、集中して技能を習熟
- ②他チームから技能を持ったスタッフを異動させる
- ③外部研修にて集中的に技能を習得
- ④技能を持ったスタッフをそのタスクに専念させる

対策案のシミュレーションから計画実行へ

実現可能な対策案の優先順位を策定

再度シミュレーションを行 い期待改善効果の確認

対策案実行へ

まとめ ~ 簡易なパラメータ設定手法の効果

効果

- ◆ 短期間でシミュレーションモデルの作成とパラメータの設 定がおこなえた
- ◆ パラメータ設定はコミュニケーションが中心となるため、 チームスタッフのプロジェクトへの参加意識も増加した
- ◆ チームスタッフの参加意識が増したことにより、シミュレーション後の対策案の具体的な提案を引き出すことができた

まとめ ~ 簡易なパラメータ設定手法の課題

<u>課題</u>

- ◆ アンケートやインタビューからの数値は主観的
- ◆ インタビューの対象が少ないと、回答した数値のばらつきが大きく影響する
- ◆ 経験年数と技能レベルに必ずしも相関があるとは限らない
- ◆ 主観的な数値と、実測値とを比較することにより、意識と 現実のギャップを明らかにすることができるかもしれない

ご清聴ありがとうございました。

株式会社 日本海洋科学

PMC 業務改善グループ

担当:米原、鈴木

Tel: 044-548-9132

Mail: pmc@yms.co.jp

HP: www.jms-inc.jp/pmc

